Notes 11/6

- Randomized trials for the null distribution
- Bootstrapping

Central Limit Theorem Recap

● Used to estimate a p-value, but only after obtaining a z-score

Recap of Handout 17

- 1. Calculate Expected value of a coin flip
- 2. Calculate variance
	- a. Weight expected values by probability
- 3. Use expected value and variance to calculate central limit theorem
- 4. Calculate the Z score
- 5. Plug in to get p value, shade in graph of distribution to highlight the probability of observing something as or more extreme than 3.13
	- a. P Value is shaded area (area <-3.13 or >3.13)
	- b. Use calculator to find $p = .001745$
		- i. Compare to typical value is .05 (called alpha) to prove coin is "unfair"

Randomized trials for the null distribution

Could we do this in a better way?

- What do we do when we don't have all the data up front? Where is this data coming from?
- If you don't know your null distribution, what do you do?
	- What if we don't know the mean or variance of the null distribution?

The answer is randomized trials

- Randomized trials: general idea
	- Run T trials
	- Record relevant information
	- Count num of times you observe results as or more extreme than your data

In class activity:

- Everyone in the class rolls die 10 times and calculates mean
	- \circ The goal is to see how often the mean is less than or equal to 2.4 (data were given)
- My results
	- \circ 3, 1, 4, 1, 3, 5, 2, 2, 5, 6
	- \circ Mean: $(3 + 1 + 4 + 1 + 3 + 5 + 2 + 2 + 5 + 6)/10 = 3.2$
- Now, list everybody's results:
	- \circ T= 20
	- \circ Ne = 1
	- O P-value = $1/20 = .05$
		- This is close
- A larger version of the same experiment:
	- $O = T = 1000$
	- \circ Ne = 30
	- \circ P-value = 30/1000 = .03

Handout 18:

- This is an opposite example, where there are a lot of "extreme" examples
- This is two sided, meaning we need to account for values that are proportionally too high and too low
- We have so many extreme values because they original value was not extreme, therefore a lot of values are considered extreme
- 60% in part 3 means "you will get a result this extreme or more extreme 60% of the time"
	- AKA this was not a surprising result, or not statistically significant at alpha = .05 confidence level

Difference in mens \$600.1 of drug is to 10mor Blood presule **EXC.MVC** Mercentes Before $2\log$; [17, 54, 96, 123, 157, ...] $\bar{X}_n = 112$ dont neel will geling the 21hg land from boot present? to be Same H of tests Afka 2wg: [72,98,105,82, ...] Mexingles $\overline{x}_n = 96$ Ho: GII tis drawn from some distribution. H, ; as we the ding, block prossure many John (one-sies) Permuturion testing Then are a lot of things we dong know about the data Goodisinvalate AWI 257 publication falcomore the tablets of the basis (betwee one offer) $2 +$ Beline [Cfe, 123, 105, 54, ...], neel to ensure then all Still nexamples After [82, 72, 117, 157, 96, 7 57, 111 M examples $X_0^0 = 101$ Now compute meas of before and collect $Next, do for T HisS (T = 1000 - 100,000)$ compuse $\overline{X}_{m}^{(t)} - \overline{X}_{n}^{(t)}$ ξ bus $5\overline{1}$ $\overline{X}_{n} - \overline{X}_{n} = 96 - 112 = 16$ Now, Low 20 we get a P-Value: d . -16 0 Count # of valus that are more extreme $\Rightarrow \overline{X}_{m}^{(k)} = \overline{X}_{n}^{(k)}$ \leftarrow $N_{e} = \frac{11}{10} \left(\frac{x^{(1)}_{0}}{x^{(1)}_{0}} - \frac{11}{10} \le -16 \right)$ **CS** Scanned with Cam $P-$ Value = $\frac{N_{c}}{T}$ $\sigma_{\rm c}$

LAC \mathbb{Z}^2 商 ď $3 - 10555$ б Fcl When Ve cont F now T \triangleright \bullet D \bullet \triangleright LSC SCMPR Volinco Ō $\sum (\lambda_i - \bar{\lambda}_i)^2$ s^2 Ő $\sqrt{1}$ 6 \sim t-distribution $\overline{1}$ Õ \ddot{t} $(\text{in}$ Some $(\text{GSE} \ N(0,1))$ $\begin{array}{c} \n\end{array}$ \uparrow ð like Z for when you, don't know various \sum à $N(U_1)$ $t - 2.5$ D Ġ, $f - 2453.5 f$ latter D V Ő. D T Ofference in Meens Γ Û. (khan aladung data) Orample **POPS** \bullet Ġ. B A 6 H_0 : $M_0 = M_0$
 H_1 : $M_0 \neq M_0$ D \overline{X} 1.3 1.6 ¢ 3 S \overline{b} 6 Stangle T 24 22 $(2 - 5i)$ e) Λ $\overline{\bullet}$ $t = \overline{X}_{A} - \overline{X}_{B}$ $1 - 9189$ $\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{8}}$ \bullet ARRACEPT \triangleright \sum -1.6 -2.44 $\overline{}$ \sum $\frac{125}{22} + \frac{189}{24}$ **RAYTIN** Him D $\overline{24}$ 2.44 2.44 D $0 - \frac{1}{3}$ 0236) 2.05 So reject min D \sum \triangleright C \triangleright $\overline{\mathbf{d}}$ **Scanned with CamScanner** 四 障

Bootstraps

Idea:

● Getting something from nothing, a measure of uncertainty

Example:

- Estimate the mean
- Sampling with replacement

Allows us to get a confidence interval

As long as we can resample data, calculate what we want to estimate, and from that get a sense of how good the estimate is.

1. Bootstrap T times

Run method on test data set

- 1. Xtest1 \rightarrow .82
- 2. Xtest $2 \rightarrow .91$
- 3. Xtest $3 \rightarrow .86$
- 4. Xtest4 $\rightarrow .95$
- 2. Sort results
- 3. Take middle 95% for confidence interval